首页> 外文OA文献 >A Review of Element-Based Galerkin Methods for Numerical Weather Prediction: Finite Elements, Spectral Elements, and Discontinuous Galerkin
【2h】

A Review of Element-Based Galerkin Methods for Numerical Weather Prediction: Finite Elements, Spectral Elements, and Discontinuous Galerkin

机译:数值天气预报的基于元素的Galerkin方法综述:有限元素,谱元素和间断Galerkin

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Numerical weather prediction (NWP) is in a period of transition. As resolutions increase, global models are moving towards fully nonhydrostatic dynamical cores, with the local and global models using the same governing equations; therefore we have reached a point where it will be necessary to use a single model for both applications. The new dynamical cores at the heart of these unified models are designed to scale efficiently on clusters with hundreds of thousands or even millions of CPU cores and GPUs. Operational and research NWP codes currently use a wide range of numerical methods: finite differences, spectral transform, finite volumes and, increasingly, finite/spectral elements and discontinuous Galerkin, which constitute element-based Galerkin (EBG) methods. Due to their important role in this transition, will EBGs be the dominant power behind NWP in the next 10 years, or will they just be one of many methods to choose from? One decade after the review of numerical methods for atmospheric modeling by Steppeler et al. (Meteorol Atmos Phys 82:287–301, 2003), this review discusses EBG methods as a viable numerical approach for the next-generation NWP models. One well-known weakness of EBG methods is the generation of unphysical oscillations in advection-dominated flows; special attention is hence devoted to dissipation-based stabilization methods. Since EBGs are geometrically flexible and allow both conforming and non-conforming meshes, as well as grid adaptivity, this review is concluded with a short overview of how mesh generation and dynamic mesh refinement are becoming as important for atmospheric modeling as they have been for engineering applications for many years. © 2015, US Government.
机译:数值天气预报(NWP)处于过渡时期。随着分辨率的提高,全局模型正朝着完全非静水动力核心发展,局部和全局模型使用相同的控制方程式。因此,我们已经达到了必须在两个应用程序中使用单一模型的地步。这些统一模型的核心是新的动态内核,旨在在具有数十万甚至数百万个CPU内核和GPU的群集上有效地扩展。 NWP运算和研究代码目前使用多种数值方法:有限差分,频谱变换,有限体积以及越来越多的有限/光谱元素和不连续Galerkin,它们构成了基于元素的Galerkin(EBG)方法。由于其在这一过渡中的重要作用,在未来十年内,EBG是否将成为NWP背后的主导力量,或者它们只是众多选择中的一种?在Steppeler等人回顾了大气建模数值方法之后的十年。 (Meteorol Atmos Phys 82:287-301,2003),本综述讨论了EBG方法作为下一代NWP模型的可行数值方法。 EBG方法的一个众所周知的弱点是在对流主导的流动中产生非物理振荡。因此,特别关注基于耗散的稳定方法。由于EBG具有良好的几何灵活性,并允许同时进行符合和不符合的网格划分以及网格自适应性,因此本文以网格生成和动态网格细化对于大气建模如何变得与工程学同样重要的简短概述作为结束。申请多年。 ©2015,美国政府。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号